Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation

نویسندگان

  • Namyong Kim
  • Ki-Hyeon Kwon
چکیده

Abstract: The minimum error entropy (MEE) algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error) and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Resilient Minimum Entropy Filter Design for Non-Gaussian Stochastic Systems

In this paper, the resilient minimum entropy filter problem is investigated for the stochastic systems with non-Gaussian disturbances. The goal of designing the filter is to guarantee that the entropy of the estimation error is monotonically decreasing, moreover, the error system is exponentially ultimately bounded in the mean square. Based on the entropy performance function, a filter gain upd...

متن کامل

A Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals

In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...

متن کامل

Set-Membership Adaptive Algorithms based on Time-Varying Error Bounds for Interference Suppression

This work presents set-membership adaptive algorithms based on time-varying error bounds for CDMA interference suppression. We introduce a modified family of set-membership adaptive algorithms for parameter estimation with time-varying error bounds. The algorithms considered include modified versions of the set-membership normalized least mean squares (SM-NLMS), the affine projection (SM-AP) an...

متن کامل

Automatic Bounding Estimation in Modified Nlms Algorithm

Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016